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Grey mouse lemur

largest mouse lemur (up to 70 grams)

lives in Madagascar, mainly in high trees

night-active

food: fruits, leaves, insects, ...
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Data

16 female & 38 male lemurs

feeding behaviour observed at 1-minute intervals

0 (not feeding), 1 (feeding), NA (missing/out of sight)
time frame: 18 – 23h
on at most 7 different days
lots of missing data

available covariates: body mass & gender

Sample:
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Basic HMM structure

St−1 0St 0 St+1

Xt−1 0Xt 0 Xt+1

. . . . . .

hidden
(behavioural state)

observed
(feeding behaviour)

Xt : State-dependent process
→ 0 (not feeding) or 1 (feeding)

St : Markov chain
→ 0/“sated” or 1/“hungry”

→ special case of a state-space model (with finite state space)
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Model for succession of behavioural states

Transition probabilities are modelled time-dependently:

logit(γ
(t)
ii ) = β0,i + β1,i t, i = 1, 2, t = 0, 1, 2, . . .

where γ
(t)
ij = P

(
St+1 = j |St = i

)
Transition probability matrix (at time t):

Γ(t) =

(
γ

(t)
11 γ

(t)
12

γ
(t)
21 γ

(t)
22

)

Initial distribution:

δ =
(
P(St = 1), (P(St = 2)

)
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Observation model

State-dependent (Bernoulli) distributions:

P
(
Xt = 1 |St = k

)
= πk

P
(
Xt = 0 |St = k

)
= 1− πk

“hungry” state: πk relatively large (typically ≈ 0.9)
“sated” state: πk close to 0

Likelihood

L = δPπ(x1)Γ
(1)Pπ(x2)Γ

(2) · . . . · Pπ(xT−1)Γ
(T−1)Pπ(xT )1t

where Pπ(xt) = diag
(
πxt

1 (1− π1)
1−xt , πxt

2 (1− π2)
1−xt

)
(for missing observations: 2× 2-identity matrix)
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Strategies for dealing with populations in the HMM framework

parameter set common to all subjects
→ neglects any possible heterogeneity across subjects

each of the parameters subject-specific
→ enormous number of parameters
→ impedes the possibility of comparing the resulting models

some parameters common to all subjects, others subject-spec.
→ special case: random effects
→ computationally demanding

subject-specific covariates
→ requires that suitable covariates are available
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Model for multiple animals

Transition probabilities:

logit(γ
(t,m)
ii ) = β0,i + β1,i t + β2,i sex

(m) + β3,imass(m)

State-dependent feeding probabilities:

πi ,m
iid∼ Beta(ai , bi ), m = 1, . . . ,M (= 54)

Likelihood:

L =
M∏

m=1

∫ 1

0

∫ 1

0
δPπ(x1,m)Γ(1,m)Pπ(x2,m)Γ(2,m) · . . .

. . . · Γ(T−1,m)Pπ(xTm,m)1t f1(π1)f2(π2)dπ1dπ2
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Estimation

Monte Carlo expectation–maximization
→ E-step requires simulation methods
→ M-step might require numerical optimization

Numerical likelihood maximization
→ integrals must be approximated numerically

Both methods are computationally demanding!
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Results (part I)
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Figure: persistence in behavioural states as function of t
Figure: upper plots refer to ‘sated’ state, lower plots to ‘hungry’ state
Figure: left plots: female lemurs, right plots: male lemurs
Figure: solid lines: mass = 59 gr, dashed lines: mass = 33 gr)
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Results (part II)
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Figure: Fitted joint probability density function of π1 and π2.

notice the scales → much more heterogeneity in π2, the
probability of eating when in the“hungry” state

doesn’t take into account possible correlation between πi ’s
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Related research

other types of time series
→ continuous and/or multivariate data
→ in particular animal movement paths
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