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A quick overview



HMMs – a brief overview

I versatile & mathematically tractable time series model

I two (discrete-time) stochastic processes, one of them hidden

I hidden state process is an N-state Markov chain

I distribution of observations determined by underlying state

St−1 0St 0 St+1

Xt−1 0Xt 0 Xt+1

. . . . . . (hidden)

(observed)

I a useful source: Zucchini and MacDonald (2009, Chapman &

Hall) – watch out for the 2nd Edition, due to appear next year!



HMMs – model formulation

A basic HMM involves

1.) the initial state probabilities δi = Pr(S1 = i), i = 1, . . . ,N

2.) the state transition probabilities γij = Pr(St+1 = j | St = i),
i , j = 1, . . . ,N, summarized in the t.p.m.

Γ =

γ11 . . . γ1N
...

. . .
...

γN1 . . . γNN


3.) the state-dependent distributions f (xt |st), e.g.

I Poisson, geometric, negative binomial (for count data)
I normal, gamma, Weibull, ... (for continuous observations)
I . . .
I combinations of these, e.g. gamma for step lengths and von

Mises for turning angles in an animal movement model



HMM machinery



HMMs – likelihood calculation using brute force

LHMM = f (x1, . . . , xT )

=
N∑

s1=1

. . .

N∑
sT =1

f (x1, . . . , xT , s1, . . . , sT )

=
N∑

s1=1

. . .

N∑
sT =1

f (x1, . . . , xT |s1, . . . , sT )f (s1, . . . , sT )

=
N∑

s1=1

. . .

N∑
sT =1

δs1

T∏
t=1

f (xt |st)
T∏

t=2

γst−1,st

Simple form, but NT summands, numerical maximization of this
expression thus infeasible.



HMMs – likelihood calculation via forward algorithm

Consider instead the so-called forward probabilities,

αt(j) = f (x1, . . . , xt , st = j).

These can be calculated using an efficient recursive scheme:

α1 = δP(x1)

αt+1 = αtΓP(xt+1)

with P(xt) = diag
(
f (xt |st = 1), . . . , f (xt |st = N)

)
and t.p.m. Γ.

⇒ LHMM = δP(x1)ΓP(x2) · . . . · ΓP(xT )1

Computational effort linear in T !



HMMs – example code

R code for computing the log-likelihood of a gamma HMM:

loglik<-function(x,delta,Gamma,pshape,pscale){
llk<-0
foo<-delta
for (t in 1:length(x)){
foo<-foo%*%Gamma*dgamma(x[t],pshape,1/pscale)
llk<-llk+log(sum(foo)); foo<-foo/sum(foo)
}
return(llk)

}

A big advantage over alternative estimation techniques (EM
or MCMC): modifications of the model usually require only
minimal changes in the code.



Estimation times for a simple gamma HMM

Example times required to numerically maximize LHMM:

N=2 N=3 N=4

T=200 0.3s 3s 10s

T=2000 2s 13s 29s

T=20000 21s 107s 284s

Computational speed is the second big advantage over
alternative estimation techniques.



Other inferential issues

I uncertainty quantification
→ bootstrap or Hessian-based

I model selection
→ information criteria

I model checking
→ pseudo-residuals, simulation-based, ...

I state decoding
→ Viterbi algorithm



Ecological applications



Animal movement modelling

I one of the standard movement models (an HMM!):
I N behavioural states, switching governed by Markov chain
I e.g. von Mises and gamma state-dependent distributions for

turning angles and step lengths, respectively

Figure: Turning angle and step length distributions for an elk in two
behavioural states (taken from Morales et al., 2004, Ecology)



General animal behaviour

I The same type of model can be (and has been) applied to
various other aspects of animal behaviour, e.g.

I to model feeding behaviour (feeding vs. not feeding)

I to model/classify whale dive types (shallow vs. deep, as
indicated e.g. by dive duration or maximum depth)



Capture-recapture

I a capture-recapture encounter history such as

1 1 0 1 0 0 0

(0: not seen; 1: seen alive)

can be regarded as the outcome of an HMM, with
I the states corresponding to the animal’s survival state, so that

Γ =

(
φ 1− φ
0 1

)
,

I Bernoulli state-dep. distribution for state 1
(the probability of success being the recapture probability)

I more or less straightforward extensions:
I capture-recapture-recovery data, multi-state

(Arnason-Schwarz) models, multi-state models with state
uncertainty, various types of covariates



Occupancy modelling

I see Olivier’s talk later in this session!



Availability bias in distance sampling for marine mammals

I Aim: a model that accounts for non-detection due to both

1) animals being unavailable for detection (submerged) and
2) available animals not being detected

0

Bt−1 0Bt 0 Bt+1

At−1 0At 0 At+1

Dt−1 0Dt 0 Dt+1

. . . (behavioural state)

(availability status)

(detection yes/no)

St+1 St+1

I N states (corresponding to “diving”, “resting”, ...)

I Dt depends on At and a covariate, namely the distance of the
animal to observer at time t



Modelling of population dynamics (illustration)

I St : true (unknown) number of individuals at time t, and e.g.

St = S∗t + Nt ,

where S∗t ∼ Binomial(St−1, φ) and Nt ∼ Poisson(λφSt−1)

I specifying some upper bound for {St}, this is a Markov chain
(with many states, yet determined by only two parameters)

I observation process: animals seen, conditional on states,

Xt |St = j ∼ Binomial(j , pt)

I (various other formulations fit into the HMM framework)



Extensions & related models



Some extensions of the basic HMM setting

I covariates, seasonality → straightforward

I random effects → conceptually straightforward, but
computationally challenging

I semi-Markov state processes → simple using a trick

I feedback, and in fact some other modifications to the
dependence structure → straightforward

I continuous-valued state processes → simple discretization
renders HMM machinery applicable

I nonparametric approaches → current research...
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